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J. Phys. A: Math. Gen. 14 (1981) L385-L388. Printed in Great Britain 

LETTER TO THE EDITOR 

Derivation of the Onsager-Machlup function by a 
minimisation of the Kullback-Leibler entropy 

H Ito 
Kakioka Magnetic Observatory, Kakioka, Yasato-machi, Niihari-gun, Ibaraki-ken, Japan 

Received 5 June 1981 

Abstract. The Onsager-Machlup function for general Markov processes with small 
parameters, inclusive of the so-called system size expansion model, is obtained by a 
conditional minimisation of the Kullback-Leibler entropy. 

In papers by Murakami (1980) and Ito (1981a) an example was given proving that the 
Kullback-Leibler (KL) entropy became a useful concept for studying stochastic 
processes; a minimisation of the KL entropy yields the so-called equivalent or 
statistical linearisation of a stochastic differential equation. 

The aim of the present Letter is to show that the Onsager-Machlup (OM) function is 
also obtained by a minimisation of the KL entropy. 

As may be imagined from its definition, the OM function has an entropy-like nature; 
in fact Bach and Durr (1978) have already noted that the potential part of the OM 

function can be interpreted as the entropy production density on the most probable 
path. They used properties peculiar to diffusion processes, so that it seems difficult to 
extend their assertion to general Markov processes. Our discussion given below is valid 
for both diffusion and jump Markov processes, though we have to assume the existence 
of a small parameter E instead. 

Let us consider a Fokker-Planck equation 

or a master equation 

in d-dimensional Euclidean space Rd. Here p ( t ,  x)  is a transition probability density 
and E is a small parameter. Model (1) is generated by a stochastic differential equation 

(3) 

Here w ( t )  is the d-dimensional Wiener process, and mT = a. Model (2), known as the 
system size expansion model (van Kampen 1961, Kubo et a1 1973), is generated by a 
jump-type stochastic differential equation 

dX"(t) = b(X"(t)) dt+&(X"(t)) dw(t). 

dX"(t)=b^(X"(t)) d t + e  c(X"(t), u)C(dt/E du). (4) I 
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Here ; ( . )=v( . ) -E[v(*) ] ,  and Y is a Poisson random measure with E[Y(-)]= 
j j  dt  du/luldc'. The relation between (2) and (4) is as follows: 

where Ir is an indicator function of a Bore1 subset r of Rd (Ito 1981b). We consider the 
stochastic differential equations (3) or (4) on a basic probability space (Cl, 3, P ) ,  

Let us introduce the OM function. Define a function H" on R d  x Rd as 

H E  (x, z )  = lim t-' Ig E:[exp(z, X f  - x)], 
t i 0  

where E: denotes a conditional expectation with XG = x. For model (1) 

H E  (x, 2 )  = (b(x), 2 )  + E (2, a (x)z)/2 (7) 

and for model (2) 

H"(x, z )  = E - *  (exp(z, U)- l)w(x, U/&) du. (8) I 
A function L E  (x, U )  on R d  x R is defined as the Legendre transformation on H' : 

LE(X, U )  = sup((2, U)-H'(x, 2 ) ) .  
Z E R ~  

(9) 

Note HE(x., z )  = H(x, E Z ) / E ,  and LE(x, U )  = L(x, U)/&. Note also that L for model (2) is 
explicitly written as 

L(X, U )  = (U -b(X), U-' (X)(U -b(X)))/2. (10) 

Here, and in the following, the superscript E is suppressed when E = 1. We call L(& it) 
the OM function for a given smooth curve q5 because the probability of moving along q5 is 
approximately exp(-J:L(q5r, dt)dt/E), or more precisely 

T 

lim lim E lg P(IXf -4rl< 6 for all t E [0, TI)  = -I L(q5t, &) dt  
& C O E & O  0 

(1 1) 

(Ventsel 1976, Ventsel and Freidlin 1980, Ito 1979). 
From (10) the OM function for model (1) is shown to have the form 

L(4r, 4r) = (dt-b(4t) ,  a- ' (4 t ) (~~-b(4 t ) ) ) /2 ,  (12) 

It will be interesting to compare this with the exact OM function in Riemannian space 
(Takahashi and Watanabe 1980, Fujita and Kotani 1981): 

L x a c t ( 4 r 3  &) = L"(4r, dt) + 3 div(4,) - &ER (13) 

where div is the Riemannian divergence, and R is the scalar curvature derived from the 
metric tensor (a ; ' ) .  Expression (12) agrees with (13) in the lowest order of E .  A similar 
remark holds for model (2) (Langouche et al 1981). 

Let p, I/ be probability measures on (Cl, 3). The KL entropy S(w, Y )  is defined by 
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where dp/dv denotes the Radon-Nikodym derivative, and we have assumed p is 
absolutely continuous with respect to v. It is well known that S(p,  v) L 0 and = O  if and 
only if p = v. 

Suppose that we are given a smooth curve 4. Take t such that 0 < t < 00 and the 
probability measure v as v ( X f  =4f). We consider minimising (14) by changing p 
under the constraints 

4 t + h  - d ' r  = E + [ x f + h  -x; 1 ,  (15) 

where E, represents the integration with respect to p. Such a minimum of S(p,  v) is 
denoted by S ( * ,  v). We allow p to range over all measures by imposing an additional 
constraint 

E,[l]= 1. (16) 

Using the Lagrange multiplier method, we only have to minimise 

s* = s - (a ,  E+ [x f+ h - x 1 - (4t+ h - 4t)) - p (E, [ 1 1 - 1 ) 

=E,[g lg g - (a ,  X;+h -x :  )g -pg l+  (at 4 t + h  -4t) + p  (17) 

without any constraints. Here g(w) = dp/dv(w), and a ,  p are multipliers. Since 
y lg y - yy attains its minimum when y = exp(y - l ) ,  so does s* when 

g(w) = exp[P - 1 + (a ,  x f + h  -X: 11. (18) 

Substituting (18) into (15) and (16), we have 

4 r + h  -4t = (a/aa)Ig &[expb, X f + h  - x f ) ] ,  (19) 

p-1 =-1gE,[exp(a,X:+;h -x; ) ] .  (20) 

s(*, v ) = ( a ,  4 t + h  -4r)-lgEu[exp(a,X;+h -x;)] .  
Using (15) and (18)-(20), we observe that 

(21) 

Take the limit h LO. Assuming limh b o  and E, are exchangeable, we have from (6) and 
(21) 

and from (6) and (19) 

Hence by virtue of (9) 

The right-hand side of (24) may be regarded as minimum entropy production under the 
constraint that the average velocity is equal to : 

qjt = lim h-'E,[Xrth - x : ]  
h l O  

(see (15)). Equation (24) claims that it is just the OM function. 
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